ESTIMASI NILAI π BERBASIS PENDEKATAN GEOMETRI DENGAN MENGHITUNG LUAS DAN KELILING POLIGON BERATURAN
Abstract
Penelitian ini bertujuan untuk menawarkan perspektif baru dalam eksplorasi nilai konstanta matematika π melalui studi analitis estimasi nilainya. Pendekatan yang digunakan adalah perhitungan luas dan keliling poligon beraturan yang didasarkan pada rumus luas segitiga dan aturan kosinus. Nilai π yang diperoleh dari perhitungan poligon dibandingkan dengan nilai π yang umum dikenal hingga delapan digit desimal (3,14159265). Hasil penelitian menunjukkan bahwa meskipun jari-jari lingkaran divariasikan, nilai konstanta yang dihasilkan dari perhitungan luas poligon bersegi 71094 identik dengan nilai π hingga delapan digit desimal. Sementara itu, perhitungan keliling poligon bersegi 25406 juga menghasilkan nilai konstanta yang identik dengan nilai π hingga delapan digit desimal (3,14159265). Namun, untuk perhitungan keliling poligon bersisi 71094 menghasilkan nilai konstanta dengan perbedaan satu digit desimal terakhir (3,14159266). Studi ini memberikan wawasan mengenai konvergensi nilai π melalui pendekatan geometris poligon beraturan.
Downloads
References
Anderson, G. R., Davies, L. M., & Hughes, P. J. 2015. Extending Trigonometric Principles in Geometric Calculations. Journal of Mathematical Analysis and Applications, 420(1), 567-582.
Anderson, R. 2018. The Pedagogical Value of Geometric Approaches to Pi. Journal of Mathematical Education, 11(2), 45-58.
Asada, A., Suzuki, T., & Tanaka, H. 2018. High-precision calculation of Pi using polygon approximation with error estimation. Journal of Information Processing, 26, 67-74.
Brown, L., & Davis, S. 2023. A Historical Overview of Pi Estimation Methods. Mathematics in the Modern World, 15(1), 12-25.
Garcia, M., Rodriguez, P., & Silva, A. 2024. Computational Geometry and The visualization of Pi Convergence. International Journal of Mathematical and Computational Sciences, 20(3), 112-127.
Jones, C., & Martinez, E. 2019. Fundamental Mathematical Constants: Pi and Its Properties. The Mathematical Gazette, 103(557), 205-218.
Jones, P., & Brown, K. 2020. Geometric Area Calculation Methods for Regular Polygons. Journal of Applied Mathematics and Physics, 8(2), 150-165
Lee, S. H., & Kim, D. G. 2019. Perimeter Calculation of Regular Polygons Using the Law of Cosines. International Journal of Geometry, 9(2), 35-48.
Lee, W., & Chen, H. 2025. Connecting Geometric Approximation of Pi with Limits and Integration. Mathematics Teacher Education and Development, 28(1), 78-91.
Miller, K. 2020. Archimedes and The Estimation of Pi: A geometric Perspective. Historia Mathematica, 47(4), 385-405.
Smith, L., Garcia, M., & Dubois, F. 2018. Fundamental Geometric Formulas and Their Applications in Engineering Design. International Journal of Engineering Education, 34(1), 78-85.
Smith, J., Williams, T., & Green, A. 2021. The Ubiquity of Pi in Mathematics and Science. Journal of Interdisciplinary Mathematics, 24(6), 1501-1515.
Song, H., & Potapov, I. 2020. Polygon Approximations of the Euclidean Circles on the Square Grid by Broadcasting Sequences. The University of Liverpool Repository.
Stewart, James. 2015. Calculus: Early Transcendentals. Edisi ke-8. Boston: Cengage Learning.
Utomo, B. 2019. Numerical study on an area of regular polygon as a concept of limit approach for unit circle using line integrals with MS Excel. IOP Conference Series: Journal of Physics: Conference Series, 1180(1), 012010.
Wilson, G., & Taylor, F. 2022. Analytical Methods for Pi Calculation: From Series to Modern Algorithms. Advances in Mathematics, 398, 108187.
Copyright (c) 2025 JUMLAHKU: Jurnal Matematika Ilmiah Universitas Muhammadiyah Kuningan

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Open Access
JUMLAHKU:Jurnal matematika ilmiah STKIP Muhammadiyah Kuningan is a national peer reviewed and open access journal that publishes significant and important research from all area of mathematics education.
This journal provides immediate open access to its content that making research publish in this journal freely available to the public that supports a greater exchange of knowledge.
Copyright
Submission of a manuscript implies that the submitted work has not been published before (except as part of a thesis or report, or abstract); that it is not under consideration for publication elsewhere; that its publication has been approved by all co-authors. If and when the manuscript is accepted for publication, the author(s) still hold the copyright and retain publishing rights without restrictions. Authors or others are allowed to multiply article as long as not for commercial purposes. For the new invention, authors are suggested to manage its patent before published. The license type is BY-NC-SA 4.0.
Disclaimer
No responsibility is assumed by publisher and co-publishers, nor by the editors for any injury and/or damage to persons or property as a result of any actual or alleged libelous statements, infringement of intellectual property or privacy rights, or products liability, whether resulting from negligence or otherwise, or from any use or operation of any ideas, instructions, procedures, products or methods contained in the material therein.