ESTIMASI NILAI π BERBASIS PENDEKATAN GEOMETRI DENGAN MENGHITUNG LUAS DAN KELILING POLIGON BERATURAN

  • Suhardiman Darson Tamu Universitas Muhammadiyah Gorontalo
  • Ricky Yuliardi STKIP Muhammadiyah Kuningan

Abstract

Penelitian ini bertujuan untuk menawarkan perspektif baru dalam eksplorasi nilai konstanta matematika π melalui studi analitis estimasi nilainya. Pendekatan yang digunakan adalah perhitungan luas dan keliling poligon beraturan yang didasarkan pada rumus luas segitiga dan aturan kosinus. Nilai π yang diperoleh dari perhitungan poligon dibandingkan dengan nilai π yang umum dikenal hingga delapan digit desimal (3,14159265). Hasil penelitian menunjukkan bahwa meskipun jari-jari lingkaran divariasikan, nilai konstanta yang dihasilkan dari perhitungan luas poligon bersegi 71094 identik dengan nilai π hingga delapan digit desimal. Sementara itu, perhitungan keliling poligon bersegi 25406 juga menghasilkan nilai konstanta yang identik dengan nilai π hingga delapan digit desimal (3,14159265). Namun, untuk perhitungan keliling poligon bersisi 71094 menghasilkan nilai konstanta dengan perbedaan satu digit desimal terakhir (3,14159266). Studi ini memberikan wawasan mengenai konvergensi nilai π melalui pendekatan geometris poligon beraturan.

Keywords: Nilai π, Luas, Keliling, Poligon Beraturan, Aturan Cosinus

Downloads

Download data is not yet available.

References

Anderson, G. R., Davies, L. M., & Hughes, P. J. 2015. Extending Trigonometric Principles in Geometric Calculations. Journal of Mathematical Analysis and Applications, 420(1), 567-582.

Anderson, R. 2018. The Pedagogical Value of Geometric Approaches to Pi. Journal of Mathematical Education, 11(2), 45-58.

Asada, A., Suzuki, T., & Tanaka, H. 2018. High-precision calculation of Pi using polygon approximation with error estimation. Journal of Information Processing, 26, 67-74.

Brown, L., & Davis, S. 2023. A Historical Overview of Pi Estimation Methods. Mathematics in the Modern World, 15(1), 12-25.

Garcia, M., Rodriguez, P., & Silva, A. 2024. Computational Geometry and The visualization of Pi Convergence. International Journal of Mathematical and Computational Sciences, 20(3), 112-127.

Jones, C., & Martinez, E. 2019. Fundamental Mathematical Constants: Pi and Its Properties. The Mathematical Gazette, 103(557), 205-218.

Jones, P., & Brown, K. 2020. Geometric Area Calculation Methods for Regular Polygons. Journal of Applied Mathematics and Physics, 8(2), 150-165

Lee, S. H., & Kim, D. G. 2019. Perimeter Calculation of Regular Polygons Using the Law of Cosines. International Journal of Geometry, 9(2), 35-48.

Lee, W., & Chen, H. 2025. Connecting Geometric Approximation of Pi with Limits and Integration. Mathematics Teacher Education and Development, 28(1), 78-91.

Miller, K. 2020. Archimedes and The Estimation of Pi: A geometric Perspective. Historia Mathematica, 47(4), 385-405.

Smith, L., Garcia, M., & Dubois, F. 2018. Fundamental Geometric Formulas and Their Applications in Engineering Design. International Journal of Engineering Education, 34(1), 78-85.

Smith, J., Williams, T., & Green, A. 2021. The Ubiquity of Pi in Mathematics and Science. Journal of Interdisciplinary Mathematics, 24(6), 1501-1515.

Song, H., & Potapov, I. 2020. Polygon Approximations of the Euclidean Circles on the Square Grid by Broadcasting Sequences. The University of Liverpool Repository.

Stewart, James. 2015. Calculus: Early Transcendentals. Edisi ke-8. Boston: Cengage Learning.

Utomo, B. 2019. Numerical study on an area of regular polygon as a concept of limit approach for unit circle using line integrals with MS Excel. IOP Conference Series: Journal of Physics: Conference Series, 1180(1), 012010.

Wilson, G., & Taylor, F. 2022. Analytical Methods for Pi Calculation: From Series to Modern Algorithms. Advances in Mathematics, 398, 108187.

Published
2025-05-31
How to Cite
Tamu, S. D., & Ricky Yuliardi. (2025). ESTIMASI NILAI π BERBASIS PENDEKATAN GEOMETRI DENGAN MENGHITUNG LUAS DAN KELILING POLIGON BERATURAN. JUMLAHKU: Jurnal Matematika Ilmiah Universitas Muhammadiyah Kuningan, 11(1). https://doi.org/10.33222/jumlahku.v11i1.4703
Abstract viewed = 5 times