PROSES FOLDING BACK SISWA DENGAN RESILIENSI MATEMATIS SANGAT TINGGI PADA MASALAH OPEN-ENDED
Abstract
Penting bagi pendidik untuk tidak hanya melihat hasil pekerjaan siswa, tetapi juga proses pemahaman matematis saat siswa menyelesaikan masalah. Folding back merupakan proses krusial dalam teori Pirie-Kieren tentang growth of mathematical understanding. Folding back adalah proses ketika siswa kembali ke level pemahaman yang lebih rendah untuk mengembangkan pemahaman matematis mereka. Penelitian ini bertujuan untuk mengidentifikasi gambaran keberagaman proses folding back siswa dalam menyelesaikan masalah open-ended pada materi trigonometri, khususnya pada siswa dengan kategori resiliensi matematis sangat tinggi. Metode yang digunakan dalam penelitian ini adalah studi kasus di kelas X Tata Busana dengan melibatkan 2 orang subjek penelitian. Terdapat 3 temuan yang dihasilkan dari penelitian ini yaitu; (1) siswa dengan resiliensi matematis yang sangat tinggi sudah mampu melakukan folding back secara mandiri; (2) siswa seringkali mengalami folding back ke level primitive knowing; serta (3) terdapat siswa yang melakukan folding back ke level formalizing setelah level inventing, guna membangun level pemahaman yang lebih tinggi.
Downloads
References
Attami, D., Budiyono, B., & Indriati, D. (2020). The mathematical problem-solving ability of junior high school students based on their mathematical resilience. Journal of Physics: Conference Series, 1469(1), 012152.
Capraro, M., Capraro, R., & Cifarelli, V. (2007). What are students thinking as they solve open-ended mathematics problems. Proceedings of the ninth international conference of Mathematics Education in a Global Community (pp. 124-128). Charlotte: University of North Carolina.
Chinn, S. (2014). Mathematical resilience: what is it and why is it important? In S. Chinn, The Routledge International Handbook of Dyscalculia and Mathematical Learning Difficulties (pp. 365-373). Oxfordshire: Routledge.
Hafiz, M., & Dahlan, J. (2017). Comparison of mathematical resilience among students with problem based learning and guided discovery learning model. Journal of Physics: Conference Series, 895(1), 012098.
Haryanti, M., Herman, T., & Prabawanto, S. (2019). Analysis of students’ error in solving mathematical word problems in geometry. Journal of Physics, 1157(4), 042084.
Johnston-Wilder, S., & Lee, C. (2010). Mathematical Resilience. Mathematics Teaching, 218, 38-41.
Johnston-Wilder, S., Brindley, J., & Dent, P. (2014). A survey of mathematics anxiety and mathematical resilience among existing apprentices. London: The Gatsby Charitable Foundation.
Kooken, J., Welsh, M., McCoach, D., Johnston-Wilder, S., & Lee, C. (2016). Development and validation of the mathematical resilience scale. Measurement and Evaluation in Counseling and Development, 49(3), 217-242.
Lee, C., & Johnston-Wilder, S. (2017). The construct of mathematical resilience. Understanding emotions in mathematical thinking and learning, 269-291.
Martin, L., & Towers, J. (2016a). Folding Back and Growing Mathematical Understanding: A Longitudinal Study of Learning. International Journal for the Lesson and Learning Studies, 5(4), 281-294.
Martin, L., & Towers, J. (2016b). Folding back, thickening and mathematical met-befores. Folding back, thickening and mathematical met-befores, 43(2), 89-97.
Nopa, J., Suryadi, D., & Hasanah, A. (2019). The 9th Grade Students' Mathematical Understanding in Problem Solving Based on Pirie-Kieren Theory. Journal of Physics: Conference Series, 1157(1), 042122.
Pirie, S. (1988). Understanding: Instrumental, relational, intuitive, constructed, formalised...? How can we know? For the Learning of Mathematics, 8(3), 2-6.
Pirie, S., & Kieren, T. (1989). A Recursive Theory of Mathematical Understanding. For the Learning of Mathematics, 9(3), 7-11.
Pirie, S., & Kieren, T. (1994a). Growth in Mathematical Understanding: How Can We Characterise It and How Can We Represent It? Learning Mathematics, 61-86.
Pirie, S., & Kieren, T. (1994b). Beyond Metaphor: Formalising in Mathematical Understanding Within Contructivist Environments. For the Learning of Mathematics, 4(1), 39-43.
Sawada, T. (1997). Developing Lesson Plans. In J. Becker, & S. Shimada, The Open-Ended Approach: A New Proposal for Teaching Mathematics (pp. 23-35). Reston: National Council of Teachers of Mathematics.
Sengul, S., & Argat, A. (2015). The Analysis of Understanding Factorial Concept Processes of 7th Grade Students who have Low Academic Achievements with Pirie Kieren Theory. Procedia - Social and Behavioral Sciences, 197, 1263-1270.
Shimada, S. (1997). The Significance of an Open-Ended Approach. In J. Becker, & S. Shimada, The Open-Ended Approach: A New Proposal for Teaching Mathematics (pp. 1-9). Reston: National Council of Teachers of Mathematics.
Susiswo, Subanji, Chandra, T., Purwanto, & Sudirman. (2019). Folding Back and Pseudo-Folding Back of the Student when Solving the Limit Problem. Journal of Physics: Conference Series, 1227(1), 012014.
Varygiannes, D. (2013). The impact of open-ended tasks. Teaching children mathematics, 20(5), 277-280.
Zanthy, L., Kusuma, Y., & Soemarmo, U. (2019). Mathematical resilience analysis of senior high school students. Journal of Physics: Conference Series, 1315(1), 012074.
Copyright (c) 2023 JUMLAHKU: Jurnal Matematika Ilmiah STKIP Muhammadiyah Kuningan

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Open Access
JUMLAHKU:Jurnal matematika ilmiah STKIP Muhammadiyah Kuningan is a national peer reviewed and open access journal that publishes significant and important research from all area of mathematics education.
This journal provides immediate open access to its content that making research publish in this journal freely available to the public that supports a greater exchange of knowledge.
Copyright
Submission of a manuscript implies that the submitted work has not been published before (except as part of a thesis or report, or abstract); that it is not under consideration for publication elsewhere; that its publication has been approved by all co-authors. If and when the manuscript is accepted for publication, the author(s) still hold the copyright and retain publishing rights without restrictions. Authors or others are allowed to multiply article as long as not for commercial purposes. For the new invention, authors are suggested to manage its patent before published. The license type is BY-NC-SA 4.0.
Disclaimer
No responsibility is assumed by publisher and co-publishers, nor by the editors for any injury and/or damage to persons or property as a result of any actual or alleged libelous statements, infringement of intellectual property or privacy rights, or products liability, whether resulting from negligence or otherwise, or from any use or operation of any ideas, instructions, procedures, products or methods contained in the material therein.